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ABSTRACT 

 

Prescribed fire is a critical management tool that influences forest physical structure and 

biological composition. Management via prescribed burning reduces fuel accumulation and the 

probability of wildfire, recycles nutrients to soil, and minimizes the spread of insect pests and 

diseases. The plant microbiome also plays an important role in reducing the occurrence of plant 

disease and increasing nutrient availability under stressful environmental conditions. How 

prescribed fire can affect the microbiome of regionally native Cornus florida, which is 

economically and ecologically valued, is not well understood. The objective of this study was to 

evaluate shifts in fungal and bacterial communities of C. florida in five different niches that 

occur following a prescribed fire event. Bacterial and fungal communities across five niches 

from 20 C. florida trees were characterized using 16S and ITS2 rRNA gene amplicon analyses. 

Our results indicate that prescribed burn had variable effects on bacterial and fungal species 

richness or diversity of different niches as these niches are located at different proximities in 

respect to the burn treatment. However, these metrics did differ significantly between our two 

study years (2018 and 2019), likely due to the differences in the environmental factors between 

these years. The relative abundance of ectomycorrhizal species decreased while that of 

saprotrophic fungi increased in root niche following prescribed burn event. Further studies will 

be required to determine if this would have any consequences on the stability of mycorrhizal 

symbioses in C. florida trees. 
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1.1 Abstract 

Cornus florida, commonly known as flowering dogwood, is a deciduous understory tree native 

to the eastern United States. The tree is highly prized for its ornamental characteristics and is a 

valuable food source for wildlife. Fruits of C. florida contain one of the highest available levels 

of calcium and fat content among forest plant resources in the eastern United States. Cornus 

florida trees contribute about $30 million in revenue to the United States annually. Cornus 

florida is also a staple nursery crop in Tennessee, with more than 70% of trees and cultivars sold 

commercially having their origins as seedlings and liners started in the state. Throughout its 

native range, C. florida trees can be affected by different diseases including dogwood 

anthracnose and powdery mildew. Despite tree losses to these pathogens in the past decades, 

high genetic diversity in the native populations of C. florida trees has been sustained. The 

microbiome of Cornus florida trees that plays a crucial role in nutrient availability as well as 

protection against biotic and abiotic diseases have not been documented yet. Moreover, 

knowledge regarding the influence of important management activities such as prescribed burn 

on the microbiome of C. florida is limited. 
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1.2 General Description 

Cornus florida L., commonly known as flowering dogwood, is a small, shade-tolerant, self-

incompatible (outcrossing), insect-pollinated tree species that belongs to the family Cornaceae 

(Sharma et al. 2005; Sork et al. 2005; Harrar and Harrar 1962). Some of the distinguishing 

physical features of C. florida include large showy bracts, alligator bark on mature trees, onion-

shaped terminal buds and opposite leaf arrangement with arcuate venation (Niemiera 2010; 

Owens 1941; Chase 1961; Wadl et al. 2011). A horticultural characteristic that helps C. florida 

stand out from other deciduous shade tree species is its inflorescence, which are surrounded by 

four showy large, petaloid, white, pink or reddish bracts (Zhuang et al. 2008). Leaves of C. 

florida contain pigments that exhibits pinkish-red colors, therefore contributing to the beautiful 

fall colors in the native distribution of the species (Holzmueller et al. 2006; Zhuang et al. 2008). 

Indigenous to the eastern United States (USA) (Kaveriappa, Phillips, and Trigiano 1997), C. 

florida is distributed from southern Ontario (Canada) and southern Michigan (USA) in the north, 

to northern Florida in the south, and as far west as eastern Texas (Mitchell, Gibbs, and Martin 

1988). The species can survive a broad range of climatic conditions, tolerating summer 

temperatures as high as 46oC in northern Florida (USA) and winter temperatures as low as -34oC 

in New England (USA) and the northern states (Mitchell, Gibbs, and Martin 1988). Cornus 

florida is endangered in Maine (USA), vulnerable in New York (USA), and endangered in 

Vermont (USA) (Lynch and Ciesla 2012). 

The genus Cornus consists of approximately 65 species and most of them are cultivated as 

ornamentals (Brockman 1968; Dirr 1998; Eyde 1988). The most commonly used species in the 

landscape are C. florida and C. kousa (Kousa dogwood) (Mmbaga and Sauve 2004). Cornus 

kousa, in comparison to C. florida, is more resistant to diseases like dogwood anthracnose and 
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powdery mildew caused by Discula destructiva Redlin (Redlin 1991) and Erysiphe pulchra 

(Cooke & Peck) (Braun and Takamatsu 2000) respectively (Wadl et al. 2008; Ranney, Grand, 

and Knighten 1995). Cornus kousa flowers about a month after the C. florida in the southern 

USA (Hadziabdic et al. 2005). It is suspected that dogwood anthracnose was introduced to the 

USA on C. kousa which did not exhibit any symptoms (Britton 1994; Mantooth et al. 2017). The 

native range of C. kousa is East Asia and it is considered as an ecological Asian replacement to 

C. florida (Cappiello and Shadow 2005). The genus exhibits a heterogeneous morphology as it 

greatly varies in inflorescence, fruits, and as well as the number of chromosomes (Xiang et al. 

2005; Ma et al. 2017). 

1.3 Morphology – General Botanical Characteristics 

Cornus florida is highly valued for its appealing ornamental features (Schopmeyer 1974). It is an 

attractive understory tree because of the yellowish cluster of flowers that resides in the center of 

four showy bracts which are either white or pink in color (Niemiera 2010). Flowering period 

ranges from mid-March in the South to late May in the north (McLemore 1990). In addition to 

showy blossoms, C. florida also exhibits attractive fall foliage (Tirmenstein 1991). The leaves of 

C. florida are simple, opposite, oval, with a rounded base that tapers to a point at the leaf tip 

(Dirr 1977). The upper leaf surface is dark green while lower is glaucous during the growing 

season (Mitchell, Gibbs, and Martin 1988). Leaves of C. florida are high in fat, calcium, and 

fluorine content (McLemore 1990; Gill and Healy 1974). 

The clustered fruits of C. florida are small, bright red drupes that are usually about 1.3 

cm long and 0.6 cm in diameter with thin flesh (McLemore 1990). The ripening stage of fruits 

falls between September to late October (Lesser and Wistendahl 1974). Fruits of C. florida 

contain high levels of available calcium (Ca) (Thomas 1969), as well as a nutritionally highest 
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fat content (approximately 18%) that is among the highest available from forest plant resources 

in the eastern USA (Hadziabdic et al. 2005; McLemore 1990). 

The bark of C. florida is among the thinnest of all eastern USA tress and can be easily 

identified as it closely resembles the skin of the alligator (Harmon 1984). The hard, heavy, 

strong, and shock-resistant wood of the tree species has been used to manufacture mallet heads, 

spools, and other special products (Duncan and Duncan 2000; Halls and Ripley 1961). Due to its 

thin bark, C. florida is sensitive to fire, however, due to its prolific sprouting ability, the number 

of stems may actually increase in burned regions of the forest (McLemore 1990). 

1.4 Propagation – Regeneration Processes 

Cornus florida can be propagated through seed (Hartmann and Kester 1975), hardwood and 

greenwood cuttings in summer and spring season respectively, layering, and micropropagation 

(Hadziabdic 2005). Cornus florida naturally germinates in the forest in spring following seed 

fall, but some seeds are not able to germinate until the second spring (McLemore 1990). Cornus 

florida is propagated through seeds and exhibit a broad range of desirable attributes for use in 

horticulture (Kaveriappa, Phillips, and Trigiano 1997). In order to overcome embryo dormancy, 

fresh collected seeds have to be stratified at 5°C for 120 days (Brinkman 1974). Plants 

propagated through seeds initiate seed production by the age of 6 years (McLemore 1990). The 

dispersal of seeds is done by birds, mammals, and gravitational force (McLemore 1990). Cornus 

florida is mainly pollinated by andrenid and halictid bees, but also by beetles, and butterflies 

(Eyde 1988). 

Several cultivars have been selected and commercialized on the basis of bract size and 

color, growth pattern and foliage aspects (Kaveriappa, Phillips, and Trigiano 1997). Cornus 

florida can be vegetatively propagated by root cuttings or by grafting buds onto the native 
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rootstocks in July and August (Witte 1995). A successful micropropagation protocol such as 

regeneration of whole plants from nodal (axillary bud) cultures of seedlings has also been 

developed for C. florida (Hadziabdic et al. 2005; Kaveriappa, Phillips, and Trigiano 1997). 

1.5 Importance 

Leaves of C. florida decompose at a faster rate than most of other tree species and its litter has 

high calcium (Ca) content, ~2–3.5% (Blair 1988; NASS 2012; Thomas 1969). Additionally, 

multiple studies have found that C. florida contains high levels of potassium (K) and magnesium 

(Mg) as compared to other tree species in oak hardwood forests (Holzmueller, Jose, and Jenkins 

2007; Day Jr and Monk 1977; Elliott, Boring, and Swank 2002). Therefore, a significant 

ecological purpose is served by C. florida trees by acting not only as a source of Ca but of K and 

Mg as well for the corresponding plant species and woodland floor biota (Thomas 1969; 

Holzmueller, Jose, and Jenkins 2007). 

Cornus florida is remarkably valuable for wildlife as the leaves, seed, fruit, twigs, and 

bark are utilized as a food source by various animals (McLemore 1990; Lynch and Ciesla 1981). 

Numerous song birds such as hermit, and gray-cheeked thrushes, white-throated sparrows, 

thrashers, bluebirds, and Eastern gray squirrels are attracted to dogwood berries, whereas 

American beavers prefer bark of C. florida (Linzey and Brecht 2003; Baird 1980; Hardin and 

Evans 1977). Deer and rabbits heavily feed upon the foliage and twigs of C. florida (McLemore 

1990). Cornus florida have also been utilized to produce traditional medicine and as a food 

preservative (Jianrong 2003; Hwang 2002). 

Cornus florida has a great economic importance, owing over $30 million in revenue in 

2009 in USA (NASS 2012). It is also a primary nursery crop for the Tennessee economy (NASS 

2012). Tennessee is the significant producer of C. florida with approximately 75% of the sales in 



www.manaraa.com

 
 

7 

the USA, and numerous rural communities rely upon dogwood production for income (Mmbaga, 

Mackasmiel, and Mrema 2018). 

1.6 Pathogens and Pests 

Cornus florida trees are widely used in the landscape as an ornamental tree but they are prone to 

several major diseases and pests that can result in tree mortality (Holzmueller et al. 2006). 

Dogwood anthracnose, caused by D. destructiva, is the most devastating disease of C. florida in 

the eastern USA (Carr and Banas 2000). It was first discovered on C. nuttallii from Clark 

County, Washington, USA in 1976 (Davidson Jr and Byther 1979) and later reported on C. 

florida in eastern North America in the mid-1970s (Hibben and Daughtrey 1988). The fungus in 

the eastern USA was initially identified as Colletotrichum gloeosporioides (Penz.) (Pirone 1980) 

and later recognized as Discula spp. (Redlin 1991; Mantooth et al. 2017) The symptoms caused 

by this disease include leaf blotch, blight, leaf spot, bract necrosis and twig die-back (Redlin 

1991). Lesions surrounded by purple margins first appear on the foliage and the infection spreads 

through the petiole, into the branch and finally into the trunk (Carr and Banas 2000). The 

developing cankers have the potential to girdle and eventually kill the tree (Carr and Banas 

2000). Conidia produced on leaves and stem acts as primary inoculum (Hibben and Daughtrey 

1988). A recent study focused on genetic diversity and population structure of D. destructiva 

isolates using microsatellite loci revealed low genetic diversity in pathogen populations 

(Mantooth et al. 2017). The authors identified the existence of four genetic clusters, which 

corresponded to two major geographic areas, the eastern USA, the Pacific Northwest, and to the 

two collection time periods when the isolates were collected (pre- and post-1993) (Mantooth et 

al. 2017).  
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The second major disease problem in C. florida is powdery mildew which is caused by E. 

pulchra. The disease initially appears on the young C. florida leaves as raised circular spots with 

a powdery white hyphal mass (McRitchie 1994). Infected leaves become distorted as they 

enlarge (Li et al. 2009). Leaf lesions may finally become necrotic and plant parts may get twisted 

or deformed (McRitchie 1994; Li et al. 2009). Conventional breeding techniques for powdery 

mildew resistance are cumbersome due to the long generation of the tree species (Parikh et al. 

2017). The identification of quantitative trait loci associated with powdery mildew resistance in 

C. florida has also been done to improve resistance against this disease (Parikh et al. 2017). In 

addition to powdery mildew and dogwood anthracnose, it has been recently reported that a 

fungal pathogen Macrophomina phaseolina has the capability to cause cankers or stem lesions 

on C. florida (Mmbaga, Mackasmiel, and Mrema 2018), which is a highly devastating pathogen 

within its host range (Islam et al. 2012). Although very uncommon, virus incidence in C. florida 

has been reported by Reddick (1989) on trees used as a propagation material in Tennessee. The 

newly identified ToMV-DW virus was isolated from a single tree and was found to have 

tobamovirus-like particles, representing a distinct isolate of tomato mosaic virus (Reddick 1989). 

Ambrosia beetles (Xylosandra spp.), dogwood twig borer (Oberea tripunctata), scurfy scale 

(Chionaspis lintneri), and flatheaded borers (Chrysobothris azurea and Agrilus cephalicus) are 

several insect pest species reported to attack C. florida (Baker 1972; Reding et al. 2010). The 

exotic species such as X. crassiusculus (Granulate Ambrosia Beetle) and X. germanus 

(Blandford) have been found to attack healthy individuals of C. florida (Kühnholz, Borden, and 

Uzunovic 2001; Oliver and Mannion 2001), and they are readily distributed in the native, eastern 

USA distribution of this tree (Solomon 1995). When exposed to biotic or abiotic stressors, trees 

are known to release volatile compounds with low molecular weight such as acetone, 
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acetaldehyde, acetic acid, ethane, ethylene, ethanol, and methanol (Rottenberger et al. 2008; 

Holzinger et al. 2000). Certain species such as X. germanus are highly attracted to ethanol and 

hence, ethanol becomes an essential host-selection cue (Ranger, Tobin, and Reding 2015; Ranger 

et al. 2012). Reding et al. (2010) study revealed that more than 90% of X. germanus attacks on 

C. florida were restrained to the main trunk of the tree within 1 m of the soil surface (Reding et 

al. 2010). 

1.7 Microbiome 

A plant’s microbiome is comprised of the community of the microorganisms that reside in the 

plant’s internal tissues as well as on the external surfaces (Rout 2014). Tree-microbe interactions 

are complex and the resulting multi-organism networks play an important role in influencing 

plant growth and productivity (Bonfante and Anca 2009; Hacquard and Schadt 2015). Plant-

associated microorganisms help in various activities such as water and nutrient absorption (Pii et 

al. 2015), combating plant pathogens (Berendsen, Pieterse, and Bakker 2012), and triggering 

host plant defenses under stress situations (Cregger et al. 2018). Although there are number of 

studies associated with plant-microbe interactions (Osono and Mori 2005; Osono 2007; Osono 

and Mori 2004), there is very limited research on the role of microbiome in C. florida 

populations. The microbiome of other species of dogwoods have been studied to some extent.  

For example, the distribution of phyllosphere fungi in giant dogwood (Swida controversa) 

(Osono, Bhatta, and Takeda 2004) and in red-osier dogwood (C. stolonifera) (Osono 2007) have 

been examined. The temporal patterns of phyllosphere fungi in giant dogwood during the 

growing season from May to October has also been analyzed (Osono and Mori 2005). Fungal 

species such as Phomopsis sp., Pestalotiopsis sp., Trichoderma viride, Colletotrichum 



www.manaraa.com

 
 

10 

gloeosporioides, Clonostachys rosea, Cladosporium cladosporioides, and Phoma sp. were 

observed frequently to be associated with S. controversa (Osono and Mori 2005). 

Although C. florida is of great ecological and economical value, little is known about its 

fungal and bacterial microbiome especially in its native environment. Previously, phyllosphere 

fungi associated with C. stolonifera and S. controversa were cataloged based on morphological 

identification (Osono and Mori 2005; Osono 2007; Osono and Mori 2004) but offer little insight 

into the biodiversity in other Cornus species, particularly those affected by D. destructiva. In 

addition, there is limited information on the effect of prescribed fire on the microbiome and 

overall tree health of C. florida. 

1.8 Prescribed Fire and Wildfire 

Prescribed fire is the intentional application of fire under particular conditions to attain certain 

management objectives (Wade and Lunsford 1989). Prescribed fire has been a crucial 

management tool frequently used in the southeastern USA (Brown et al. 2013). Fire plays an 

integral role in influencing the forest structure and composition (Wright, Wright, and Bailey 

1982; Heinselman 1973). A wide range of objectives can be fulfilled through prescribed fire such 

as reducing wildlife-managing hazards by checking fuel accumulation, horticultural 

improvements, control of weeds, insects, and diseases (Wade and Lunsford 1989; Fernandes and 

Botelho 2003; Kilgore and Curtis 1987). The fire behavior is determined by various factors 

including fire type; length, height, depth of flame, and fire intensity (Weir 2009). A number of 

studies have reported a shift in soil- (Anderson et al. 2007; Bastias et al. 2006; Bastias, Xu, and 

Cairney 2006) and root-associated (Buscardo et al. 2010; Cairney 2002) fungal communities due 

to fire, particularly if the fire intervals are short. 
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Fairman et al. 2019 investigated the effects of short-interval wildfires on the resilience as 

well as resistant traits of the fire-tolerant forests in Eucalyptus trees (Fairman, Bennett, and 

Nitschke 2019). They concluded that in order to rescue themselves effectively from the adverse 

effects of high severity fires, the stems of Eucalyptus trees have to reach a minimum stem 

diameter known as escape size (Fairman, Bennett, and Nitschke 2019). Mikita-Barbato et al. 

(2015) evaluated the impacts of wildfire which burned over 7000 ha of New Jersey Pinelands, by 

associating soil properties to changes in microbial communities in organic horizon soils. 

Significant changes were observed in the physical and chemical characteristics in the organic 

horizon of the soils shortly after the fire (Mikita-Barbato, Kelly, and Tate III 2015). These 

changes occurred along with shifts in the bacterial, fungal, and archaeal communities that were 

most altered compared to unburned plots during the first year after fire (Mikita-Barbato, Kelly, 

and Tate III 2015). The microbial communities changed more slowly during the second year 

after fire and were still distinct from communities in the non-burned soils 25 months post-fire 

(Mikita-Barbato, Kelly, and Tate III 2015). The dynamics of soil carbon (C) and nitrogen (N) is 

governed by wildfire severity to a great extent (Adkins, Sanderman, and Miesel 2019). High-

severity wildfires can even convert forests from C sinks to C sources when C losses via 

decomposition surpass photosynthetic C accumulation during post-fire forest recovery (Kashian 

et al. 2006; Adkins, Sanderman, and Miesel 2019). 

Although prescribed fire has become an important forest management tool, a lot of our 

knowledge of fire effects on soil properties comes from wildfires (Oliver, Callaham Jr, and 

Jumpponen 2015). It is still uncertain whether the impacts of wildfires on plant microbial 

communities are comparable to those of prescribed burning as wildfires frequently burn hotter, 

consume more organic matter, and result in greater nutrient volatilization than prescribed burns 
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(Hatten and Zabowski 2010; Nilsson et al. 2019; Oliver, Callaham Jr, and Jumpponen 2015). 

Prescribed fires are usually applied under low fire intense and severe conditions, and are 

generally outside of the high risk conditions that are most conducive for wildfires (Oliver, 

Callaham Jr, and Jumpponen 2015). A study compared fire severity between prescribed fires and 

wildfires in a temperate ponderosa pine forest (Choromanska and DeLuca 2001). They reported 

that prescribed fire consumed 42% of the fine fuel and resulted in no overstory tree mortality, 

whereas wildfire consumed all fine fuel and led to complete stand mortality highlighting the 

substantial difference between wildfires and management through prescribed fire (Choromanska 

and DeLuca 2001). Therefore, the effects of prescribed burn on microbial communities might be 

expected to have less dramatic effects than those of wildfires (Neary et al. 1999). 

Cornus florida is well-suited to periodic prescribed fires (Gill and Healy 1974). The tree 

species generally sprouts adequately from the root crown after the plants are top-killed or 

damaged by fire (Tirmenstein 1991; Gill and Healy 1974). Specific response after prescribed fire 

depends upon various factors such as intensity of fire, season of burn, site factors, fire frequency 

(Tirmenstein 1991). A study conducted in George National Forest near Brandywine, West 

Virginia reported that average seedling densities of C. florida before and after 5 years of 

prescribed fire were 605 and 737 seedlings/acre respectively; and sprout densities were 1,158 

sprouts/acre before and 1,553 sprouts/acre 5 years after the fire (Wendel and Smith 1986). 

1.9 Research Gap 

Microbiome-mediated defenses can be utilized to reduce pathogen establishment or to interact 

with the immune response of host plants to reduce pathogen colonization success. The extent to 

which microbial communities of C. florida influence resistance or susceptibility to pressures like 

plant disease is largely unknown, especially in post-burn areas of the forest. Knowledge 
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regarding the influence of management activities such as prescribed burn on the microbiome of 

C. florida also is limited. This report provides a baseline evaluation of the responses of fungal 

and bacterial communities associated with C. florida before and after a prescribed burn 

management by evaluating the microbiomes associated with pre- and post-burn exposed C. 

florida trees. The main objective of this study was to estimate changes in fungal and bacterial 

microbiome across five different niches of C. florida in response to a prescribed forest fire. The 

niches included in this study were soil, roots, bark, stem, and leaves. We hypothesized that alpha 

diversity of microbial communities would decrease in burned plots after 152 days of the 

prescribed burn treatment and the extent of reduction in the alpha diversity would vary according 

to the niche. We also hypothesized that the prescribed burn treatment would have significant 

impacts on microbial community composition in all five niches. We expected different niches to 

respond differently to prescribed burn treatment and also expected to have differences in the 

microbial diversity and community composition due to different environment factors in years 

2018 and 2019. 
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2 Chapter Two: Flowering Dogwoods under Fire: Responses of the 

Microbiome under Prescribed Burn Management 
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2.1 Abstract 

Prescribed fire is a critical management tool that influences forest physical structure and 

biological composition. Management via prescribed burning reduces fuel accumulation and the 

probability of wildfire, recycles nutrients to soil, and minimizes the spread of insect pests and 

diseases. The plant microbiome plays an important role in reducing the occurrence of plant 

disease and increasing nutrient availability under stressful environmental conditions. How 

prescribed fire can affect the microbiome of regionally native Cornus florida, which is 

economically and ecologically valued, is not well understood. The objective of this study was to 

evaluate shifts in fungal and bacterial communities of C. florida in five different niches that 

occur following a prescribed fire event. Bacterial and fungal communities across five niches 

from 20 C. florida trees were characterized using 16S and ITS2 rRNA gene amplicon analyses. 

Our results indicate that prescribed burn had variable effects on bacterial and fungal species 

richness or diversity of different niches as these niches are located at different proximities in 

respect to the burn treatment. However, these metrics did differ significantly between 2018 and 

2019 likely due to the differences in the environmental factors between these years. The relative 

abundance of ectomycorrhizal species decreased while that of saprotrophic fungi increased in 

root niche following prescribed burn event. Further studies will be required to determine if this 

would have any consequences on the stability of mycorrhizal symbioses in C. florida trees.  
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2.2 Introduction 

Plant-associated microbial communities have critical roles in water and nutrient uptake, stress 

tolerance, and plant defense (Cregger et al. 2018; Peiffer et al. 2013; Berendsen, Pieterse, and 

Bakker 2012). These plant-associated microbial communities also play a fundamental role in 

driving various ecological processes such as decomposition and carbon cycling (Martiny et al. 

2016). Moreover, microbes also have symbiotic relationship with plants – for instance, 

mycorrhizal fungi interact with plants and can help in initial terrestrial colonization (Humphreys 

et al. 2010). Additionally, the plant microbiome can greatly extend the ability of the host to adapt 

under changing environmental conditions (Goh et al. 2013). In comparison to herbaceous plant 

species, including model organisms such as Arabidopsis spp., tree-microbe interactions are 

extremely complex (treBonfante and Anca 2009). 

Abiotic factors such as soil physicochemical properties, particularly soil pH, are major 

factors affecting soil microbial structure and composition (Fierer and Jackson 2006). The 

rhizosphere includes the zone of soil that is influenced by exudates released from plants and 

microorganisms (Rout 2014). The vast microbial diversity within this niche (Egamberdieva et al. 

2008; Mendes et al. 2011) provides a microbiome cohort that can serve as the first line of 

defense against soil-borne plant pathogens (Mendes et al. 2018), or aid in plant responses to 

stress conditions such as drought and other abiotic situations (Fitzpatrick et al. 2018).  

During the last decade, research related to interaction between plant hosts and their associated 

phyllosphere microbial communities has made great progress (Bodenhausen et al. 2014). The 

phyllosphere microbiome is diverse and include different bacteria, algae, yeasts, and filamentous 

fungi taxa, and, less frequently, protozoa and nematodes. Interactions between the phyllosphere 

(above-ground portion of plant), rhizosphere (below-ground portion of the plant), diversity and 
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abundance of their associated microbial communities can be influenced by number of 

environmental and physiological conditions (Rout 2014; Bais et al. 2004). However, their current 

research findings indicate that bacteria are the most abundant inhabitant of the phyllosphere 

(Lindow and Brandl 2003).  

Host plant genotype has been the recognized as a principal factor affecting both fungal 

and bacterial phyllosphere communities (Ulrich, Ulrich, and Ewald 2008; Vorholt 2012). 

Constituents of these communities are associated with the production of growth-promoting 

nutrients and hormones that aid in plant defenses (Gourion, Rossignol, and Vorholt 2006; Reed 

et al. 2010). Microbial biodiversity is also an important trait that forms a part of the phenotype of 

the host organism with important effects on host fitness and evolution (Berendsen, Pieterse, and 

Bakker 2012; Zilber-Rosenberg and Rosenberg 2008; Benson et al. 2010; Whitham et al. 2003). 

Because of the importance of the phyllosphere microbiome for plant health, the need to 

understand the drivers of microbial community assembly has become the cornerstone of 

microbial ecology research (Kembel et al. 2014; Robinson, Bohannan, and Young 2010). 

 Prescribed fire describes an intentional application of fire under particular weather 

conditions to attain certain management objectives such as reducing the hazard of wildfire, 

control of weeds, insects, and plant pathogenic disease (Wade and Lunsford 1989; Fernandes and 

Botelho 2003; Kilgore and Curtis 1987). Prescribed fire has been a crucial management tool 

frequently used in the southeastern USA, as the practice is an integral contributor to influencing 

the structure and composition of forest systems (Wright, Wright, and Bailey 1982; Heinselman 

1973; Brown et al. 2013). In addition to its obvious above-ground effects, fire can alter soil 

physical characteristics like structure, porosity and water relations, organic matter content, and 

soil chemistry including mineral nutrient availability (Mao et al. 2002). Soil microorganisms can 
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also be affected by fire, either as a direct result of heating or by indirect effects of changes to soil 

physical and chemical properties (Neary et al. 1999). Effects of fire on the biogeochemical 

characteristics of a forest ecosystem are widely acknowledged, however, how a prescribed fire 

will shape the microbiome of a specific tree species, like Cornus florida, is largely unknown.  

 Cornus florida L. (flowering dogwood; Cornaceae) is a small, shade-tolerant, self-

incompatible understory tree species native to the eastern United States (USA) (Sharma et al. 

2005; Harrar and Harrar 1962; Sork et al. 2005). This tree species is an important food source for 

various animals and game species, and is also an economically valuable ornamental plant 

(Mantooth et al. 2017; McLemore 1990). Fruits of C. florida contain one of the highest available 

levels of calcium and fat among forest plant resources in the eastern USA (Hadziabdic et al. 

2010). Cornus florida is a staple nursery crop in Tennessee, with more than 70% of trees and 

cultivars sold commercially having their origins as seedlings and liners started in the state 

(NASS 2012).  

Although two major plant pathogenic diseases have impacted C. florida trees (Carr and 

Banas 2000; McRitchie 1994; Daughtrey et al. 1996), considerable genetic diversity of this host 

species has been sustained despite high tree mortality rates (Hadziabdic et al. 2012; Hadziabdic 

et al. 2010). The influence that these tree diseases and the high mortality rates of trees within 

regional areas have had on host plant-associated fungal and bacterial communities have not been 

studied. In addition, the role of planned understory management using prescribed fire in shaping 

microbial community of C. florida trees is largely unknown. 

Microbiome-mediated defenses can be utilized to reduce pathogen establishment or to 

interact with the immune response of host plants to reduce pathogen colonization success. The 

extent to which microbial communities of C. florida influence resistance or susceptibility to 
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pressures like plant disease is largely unknown, especially in post-burn areas of the forest. 

Knowledge regarding the influence of management activities and ecological perturbations such 

as prescribed burn and forest fires on the microbiome of C. florida also is limited. This report 

provides a baseline evaluation of the responses of fungal and bacterial communities associated 

with C. florida before and after a prescribed burn management. The main objective of this study 

was to describe changes in diversity and community composition of fungal and bacterial 

microbiome across five different niches of C. florida in response to a prescribed forest fire. The 

niches included in this study were soil, roots, bark, stem, and leaves. We hypothesized that alpha 

diversity of microbial communities would decrease in burned plots after 152 days of the 

prescribed burn treatment and the extent of reduction in the alpha diversity would vary according 

to the niche. We also hypothesized that the prescribed burn treatment would have significant 

impacts on microbial community composition in all five niches. We expected different niches to 

respond differently to prescribed burn treatment and also expected to have differences in the 

microbial diversity and community composition due to different environment factors in years 

2018 and 2019. 

2.3 Materials and Methods 

2.3.1 Site Description and Study Design 

This study was conducted at the University of Tennessee Highland Rim Forest Unit Research 

and Education Center in Tullahoma, TN (35.32, -86.15). The experimental site was divided into 

four plots, each about 4000 m2 in area that contained mid-aged to mature, established C. florida 

trees. Each plot was randomly assigned to a treatment group, burned or unburned, for a total of 

two plots per treatment. Within each plot, five C. florida trees were randomly selected for 
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sampling with diameter at breast height (DBH) ranging from 6-10 cm. The mean age of the trees 

was 38.5 years old and mean height was 8.05 m (Table 2.3). 

2.3.2 Habitat and Host Plant Characteristics 

Vegetation cover and foliage density were assessed pre- and post-burn. Vegetation cover was 

assessed within a five m radius around each study tree. In each of the four cardinal directions, the 

cover of leaf litter, woody debris, standing dead, and live trees was recorded at one m intervals 

(Table 2.2).  

 To provide an approximation of tree age, cores were taken from the main trunk at 

approximately breast height for all C. florida trees within plots using an increment borer. Cores 

were removed from the borer, transported to the lab protected within 15 ml Falcon tubes 

(Thermo Fisher Scientific™, Waltham, MA), where they were attached with wood glue to six-

inch plastic pot tags, and then were air dried beneath weight to prevent curling. Once dried, a flat 

surface was sanded into the core and Natural #209 wood stain (Minwax Wood Finish Penetrating 

Stain, Sherwin-Williams Co., Cleveland, OH) was used to provide contrast so that annular rings 

could be visualized beneath a dissecting microscope on the pale surface of the wood. The age of 

the trees ranged from 29 to 50 years with 38 years as median age (Table 2.3). 

2.3.3 Burn Application  

The prescribed burn occurred on March 28, 2019. The fire was applied by UT Forest Resources 

Research & Education Center staff (Oak Ridge, TN) who were assisted by Tennessee Division of 

Forestry employees. Application of fire started on east side of the plot and moved towards the 

west direction and the plots burned for 1 hour. Fire initiated as head fire and started behaving as 
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back fire after 10 min. Based on infra-red imaging, the maximum temperature recorded at any 

time during the burn was 680°C. 

2.3.4 Pre- and Post-Prescribed Fire Sample Collection 

Samples were collected from five different niches: fine roots, soil, bark, stem, and leaves before 

and after the burn. The pre-burn sample collection was completed on September 20-21, 2018 and 

the post-burn sample collection was completed on September 6-7, 2019. Tools were cleaned 

sterilized between niches and trees using 70% non-denatured ethanol to prevent cross-

contamination. 

For collection of fine roots, surface soil was gently scraped to remove the litter and plant 

debris from the immediate base of each tree. To ensure that roots from trees of interest and not 

neighboring trees were sampled, we sampled fine roots from lateral roots that could be identified 

projecting from the base of each study tree. For bulk soil, soil cores (15 cm deep x 3 cm 

diameter) were collected in the four cardinal directions approximately 0.3 m from the base of the 

tree using a sterilized stainless-steel soil probe. Soil cores were pooled per tree and homogenized 

in the field. Plant debris and larger roots were removed. For microbiome analyses, an 

approximately 5 g subsample of homogenized soil sample was placed in a small Whirl-Pak® bag 

(Nasco, Atkinson, WI), transported to the lab in liquid nitrogen, and stored at -80°C until DNA 

extraction. The remaining bulk soil was stored at 4°C. Soil was air-dried, ground, passed through 

a 2-mm sieve (No. 10), and sent to Brookside Laboratories (New Bremen, OH) for analysis of 

pH (1:1), soil organic matter (SOM; loss on ignition 360°C), nitrate (NO3.N), ammonium 

(NH4.N), extractable aluminum (Al), boron (B), calcium (Ca), copper (Cu), iron (Fe), potassium 

(K), magnesium (Mg), manganese (Mn), sodium (Na), phosphorus (P), sulfur (S), and zinc (Zn). 
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 Bark samples were collected by shaving portions of the cambium at approximately 30 cm 

from the base of the tree. For sampling of the remaining three niches a pole pruner was used to 

sample three to four, small to medium sized, branches from each tree. For stem samples, 

approximately 2-3 branch sections, 8 cm in length by 2 mm in diameter were cut from each 

sampled branch and pooled per tree for a total of 10-12 bark sections per tree. For leaves, we 

sampled approximately 3-4 leaves from each branch section for a total of 10-12 leaves per tree. 

Collected fine roots, bark shavings, branch sections, and leaves were stored in 50 ml Falcon 

tubes (Thermo Fisher Scientific™, Waltham, MA), transported to the lab in liquid nitrogen, and 

stored at -80°C until DNA extraction. 

2.3.5 DNA Extractions 

DNA was extracted from fine roots, bark shavings, branch sections, and leaves following the 

protocol of the E.Z.N.A. Plant DNA DS Mini Kit (Omega Bio-tek, Norcross, GA). For DNA 

extraction from soil, we followed the protocol of the PowerLyzer® PowerSoil ® DNA Isolation 

Kit (Qiagen, Carlsbad, CA). The extracted DNA was stored at -20°C until library preparation for 

sequencing on the Illumina MiSeq platform. 

2.3.6 16S rRNA Gene and ITS Library Preparation and Sequencing 

For pre-fire DNA samples, the University of Tennessee Genomics Core (Knoxville, TN, USA) 

performed library preparation of the 16S (bacteria and archaea) and ITS (fungi) regions. We 

adopted a two-step PCR approach to barcode templates with the following modifications. 

Primers for amplifying bacterial amplicons were modified 515F (forward) and 785R (reverse) 

primers (Walters et al. 2016) with Illumina MiSeq specific adapters for the 16S rRNA V4 region. 

The ITS2 region in fungal sequences was amplified using ITS3 forward and ITS4 reverse 
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primers (Martin and Rygiewicz 2005). Amplification reactions for the primary PCR were 

performed in 25 µL volumes containing 2x KAPA HiFi hot start ready mix, 2.5 µL of genomic 

DNA and 2 µM of forward and reverse primers each. Thermocycler conditions for the primary 

PCR were: initial denaturation at 95 °C for 30 s, followed by 30 cycles of denaturation at 95 °C 

for 30 s, annealing at 55 °C for 30 s, and elongation at 72 °C for 30 s and then final elongation 

step at 72 °C for 5 min. Primary PCR products were cleaned with 20 µL of AMPure beads and 

eluted in 50 µL of hydroxymethyl-aminomethane (TRIS) buffer. Secondary PCR had purified 

DNA tagged with barcoded forward and reverse indexes in the 50 µL reaction having 5 µL of 

genomic DNA. Thermocycler conditions for secondary PCR were: Denaturation at 95 °C for 3 

min, followed by 8 cycles of denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, 

elongation at 72 °C for 30 s and then final elongation step at 72 °C for 5 min. The product was 

quantified on a NanoDrop 1000 spectrophotometer (NanoDrop Products, Wilmington, DE, 

USA). After PCRs, the samples were pooled based on the Bioanalyzer (Agilent, Santa Clara, 

CA, USA) reading. The final loading concentration of the pooled samples was 4 pM. Illumina 

Miseq sequencing was carried out using a 20% PhiX spike on a V2, 500 cycle flow cell reading 

2 x 250 in the UT Genomics Core. The post-fire DNA samples were sent to Psomagen, Inc. 

(Rockville, MD, USA) and the procedure used for the 16S and ITS library preparation was 

identical. 

2.3.7 16S rRNA Gene Sequence Processing 

Sequences were processed into Operational Taxonomic Units (OTUs) using mothur (v.1.43.0) 

(Schloss et al. 2009). Prior to sequence processing in mothur, forward and reverse primers were 

first removed using the cutadapt program (Martin 2011). Processing of 16S sequences was 

performed using a modified version of the mothur Illumina MiSeq SOP (Kozich et al. 2013). 
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Briefly, forward and reverse sequences were merged using the make.contigs command in 

mothur. We removed sequences containing ambiguous bases and homopolymers (>8 bp), using 

the screen.seqs command. Sequences were aligned to SILVA v.138 reference database using the 

align.seqs command (Quast et al. 2012). Aligned sequences were pre-clustered (maxdiff = 2 bp) 

using the pre.cluster command. Pre-clustered sequences were screened for the presence of any 

chimeras via VSEARCH using chimera.vsearch command (Rognes et al. 2016). The sequences 

were then classified using SILVA reference alignment with the classify.seqs command to 

generate the best species classification. Sequences that were classified as originating from 

chloroplasts, mitochondria, eukaryota, or unknown were removed using remove.lineage 

command. The sequences were then clustered into OTUs with 97% cut-off level using 

cluster.split command. 

2.3.8 ITS Sequence Processing 

Sequences were processed into Amplicon Sequence Variants (ASVs) using DADA2 ITS pipeline 

workflow (https://benjjneb.github.io/dada2/ITS_workflow.html) in R version 3.5.3 (Callahan et 

al. 2016; R Core Team 2011). Due to the highly variable ITS region, all the possible orientations 

of forward and reverse primers were removed from both the forward and reverse sequences using 

cutadapt program (Martin 2011). Then, the forward and reverse sequences were filtered and 

trimmed using filterAndTrim command with default parameters. We de-replicated the identical 

reads using derepFastq command. Next, forward and reverse sequences were merged using 

mergePairs command. The ASV table was constructed using makeSequenceTable command and 

chimeras were removed from the merged sequences using removeBimeraDenovo with default 

parameters. The naive Bayesian classifier method was used to assign taxonomy to the sequences 

using General Fasta file version 8.2 from the UNITE ITS database (Nilsson et al. 2019). 
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2.3.9 Classification of Fungal Functional Guilds 

Fungal ASVs were assigned to fungal functional guilds using the online version of the 

FUNGuild database (http://funguild.org, accessed 26 November, 2019; (Nguyen et al. 2016)) 

with a confidence cut-off of “possible”. To visualize differences in fungal functional guilds 

before and after prescribed burn treatment of C. florida trees, abundance values for any ASV 

assigned to multiple functional guilds were divided by the number of functional guilds assigned 

to an ASV so that each possible function for that ASV were equally weighted. To visualize 

differences in potential fungal functions, stacked bar plots depicting the relative abundance of 

each fungal functional guild were created. 

2.3.10 Statistical Analyses 

We performed all statistical analyses in R program. To visualize differences in soil 

physicochemical properties before and after the prescribed burn treatment, soil physicochemical 

properties were scaled and centered and a principal component analysis (PCA) was conducted 

using the prcomp function from the stats package.  

Prior to alpha and beta-diversity analyses, OTU tables for bacteria and ASV tables for 

fungi were rarefied to account for differences in sequencing depth. Rarefaction cut-offs were 

chosen by evaluating rarefaction curves and selecting a minimum sequencing depth that allowed 

us to maximize coverage and reduce sample loss. Using the rarefied OTU and ASV abundance 

tables, we calculated the observed species richness and the Shannon diversity index with the 

specnumber and diversity functions from the vegan package (Oksanen et al. 2018). To test the 

burn and year differences in bacterial and fungal diversity and richness, we performed repeated 

measures analysis of variance (ANOVA) using the lme function from nlme package (Bliese 

2006). Singleton OTUs and ASVs were then removed from the respective rarefied tables. To 
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visualize taxonomic differences for each niche by treatment for each year, we used relative OTU 

and ASV abundances to construct stacked bar plots of bacterial and fungal phyla, and classes. To 

analyze bacterial and fungal beta-diversity before and after the burn, we performed a principal 

coordinate analysis (PCoA) on Bray-Curtis dissimilarity using the pcoa function of the ape 

package for each niche (Paradis and Schliep 2019). Dissimilarity indices were calculated from 

the relative abundance OTU and ASV tables with singletons omitted using the vegdist function 

from the vegan package (Oksanen et al. 2018). Additionally, the contribution of burn and year to 

variation in community composition was tested using PERMANOVA with the adonis function in 

vegan with 10,000 permutations (Oksanen et al. 2018). 

2.3.11 Indicator Species Analysis 

To identify bacterial OTUs and fungal ASVs characteristic of the control and burned plots we 

performed indicator species analysis for all five niche microbial communities of C. florida using 

the multipatt function from the indicspecies package with 10,000 permutations (Cáceres and 

Legendre 2009). We report significant bacterial OTUs and fungal ASVs (P £ 0.05, indicator 

value ³ 0.80) for control and burned plots of C. florida trees. 

 

  



www.manaraa.com

 
 

27 

2.4 Results 

2.4.1 Differences in Soils Physicochemical Properties 

Soil physicochemical properties did not significantly differ by prescribed burn treatment (Fig. 

2.1; Pseudo-F1,39 = 2.27, P = 0.109, R2 = 0.03, but instead separated out by sampling year along 

the first principal component (PC). A total of three principal components were retained 

accounting for 74.7% of the variation in the data. PC1 (50.02% variation explained) correlates 

with OM, Mg, TEC, Na, Fe, K, P, Al, and Ca. PC2 (14.4% variation explained) correlates with 

Zn, Cu, Mn, and NH4.N. Finally, PC3 (10.3% variation explained) correlates with Cu, S, Mn, 

NH4.N., pH, and Zn. 

2.4.2 Bacterial and Fungal Sequence Processing 

A total of 17 million 16S rRNA gene and 13 million ITS sequences were assembled from paired-

end reads across 200 samples for both 2018 (pre-fire) and 2019 (post-fire) data. Following 16S 

rRNA gene sequence processing in mothur, a total of 5,388,026 sequences were clustered into 

169,999 bacterial OTUs. No sequences identified as archaea were retained following sequence 

processing. After ITS sequence processing in DADA2, a total of 6,955,451 sequences were 

retained across 12,456 fungal ASVs. Prior to downstream analysis, bacterial and fungal 

sequences from samples in each niche were rarefied to allow for within niche comparisons of 

alpha and beta-diversity (Table 2.3). 

2.4.3 Differences in Below-ground (Soil and Roots) Microbiome 

Soil bacterial alpha-diversity (richness and Shannon diversity) and community composition did 

not significantly differ by burn treatment (Fig. 2.2A, B, Fig. 2.3A, Table 2.2). However, alpha-

diversity measures and community composition did significantly differ between 2018 and 2019 
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for all four plots (Fig. 2.2A, B, Fig. 2.3A; Table 2.2). The majority of soil bacterial sequences 

were classified to Proteobacteria (28%) in 2018 with sequences from Alphaproteobacteria (19%) 

being the most frequently detected at class level (Fig. 2.4A, B). In 2019, sequences from 

Acidobacteria (27%) were the most dominant in soil with sequences from the class 

Acidobacteriae (25%) having the greatest representation (Fig. 2.4A, B). Prescribed burn 

treatment did not have any significant effect on soil fungal alpha diversity, however, soil fungal 

community composition significantly different between burned and control plots (Fig. 2.3B, 5A, 

B; Table 2). Basidiomycota (56%) was the most abundant fungal phyla for soil with most 

sequences classified to Agaricomycetes (56%) at class level across both years (Fig. 2.6A, B). A 

total of 3,691 ASVs out of 4,409 ASVs in soil fungal community were assigned to a fungal 

functional guild. The majority of soil fungal sequences belonging to classifiable ASVs were 

identified as potential ectomycorrhizal fungi in 2018 (49%) which increased to 61% in 2019 

(Fig. 2.7A). 

 Bacterial alpha diversity for root niche was not significantly different between burned 

and control plots, however, root bacterial community composition was significantly different 

(Fig. 2.2C, D, Fig. 2.3C; Table 2). Sequences from Proteobacteria (40%) were the most abundant 

in roots and those classified to Actinobacteria (32%) were the most dominant at class level 

across both years (Fig. 2.4C, D). Richness and diversity values for the fungal community in roots 

did not significantly differ by burn treatment (Fig. 2.5C, D; Table 2). However, root fungal 

community composition differed significantly by the burn treatment (Fig. 2.3D; Table 2). 

Ascomycota (48%) was the most dominant fungal phyla for roots with Agaricomycetes (46%) 

having the most representation at class level across both years (Fig. 2.6C, D). In root fungal 

communities, a total of 1,197 ASVs out of 1,375 ASVs were assigned to a fungal functional 
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guild. The majority of root fungal sequences that belonged to classifiable ASVs were identified 

as potential undefined saprotrophs in 2018 (47%) and 2019 (33%) (Fig. 2.7B). Interestingly, the 

relative abundance of classifiable OTUs identified as potential wood saprotrophs increased from 

5% in 2018 to 36% in 2019 in burned plots, whereas, relative abundance of potential 

ectomycorrhizal fungi decreased from 44% in 2018 to 15% in 2019 following prescribed burn 

treatment (Fig. 2.7B). 

2.4.4 Differences in Above-ground (Bark, Stem, and Leaves) Microbiome 

Prescribed burn did not significantly shift the richness and diversity of bacterial and fungal 

communities for above-ground niches (i.e. bark, stem, and leaves) (Table 3). Bacterial and fungal 

community composition did significantly differ by burn treatment for bark and leaves but not for 

stems (Fig. 2.3E, G, I, Table 3). A majority of sequences were identified as Proteobacteria for 

bark (30%), stem (63%), and leaves (55%) and most sequences at the class level were classified 

to Alphaproteobacteria (bark - 25%, stem - 61%, leaves - 54%) for both years (Fig. 2.7). For 

fungal communities, a majority of the sequences were identified as Ascomycetes (bark - 77%, 

stem - 84%, leaves - 93%) with Dothideomycetes (bark - 77%, stem - 84%, leaves - 93%) being 

the most abundant at the class level across both years (Fig. 2.8). 

 In the bark fungal community, a total of 2,260 ASVs out of 2,767 ASVs were assigned to 

a fungal functional guild. The majority of bark fungal sequences belonging to classifiable ASVs 

were identified as potential undefined saprotrophs in 2018 (31%) and potential wood saprotrophs 

in 2019 (45%) (Fig. 2.7C). In stem fungal communities, a total of 2,948 ASVs out of 3,583 

ASVs were assigned to a fungal functional guild. The majority of stem fungal sequences 

belonging to classifiable ASVs were identified as potential plant pathogens both in 2018 (58%) 

and 2019 (45%) (Fig. 2.7D). In leaf fungal communities, a total of 2,824 ASVs out of 3,638 
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ASVs were assigned to a fungal functional guild. The majority of leaf fungal sequences 

belonging to classifiable ASVs were identified as potential plant pathogens in 2018 (40%) and 

potential undefined saprotrophs (58%) in 2019 (Fig. 2.7E). 

2.4.5 Bacterial and Fungal Indicator Species 

A total of 1,285 bacterial indicator OTUs for soil and 96 bacterial indicator OTUs for root 

communities were detected across control and burned plots before and after prescribed burn 

treatment. Diplorickettsiaceae was found to be an indicator OTU in soil bacterial communities of 

burned plots in 2019. In root bacterial communities, Acidothermaceae, which contains 

thermophilic species, was found as an indicator bacterial OTU post prescribed burn treatment 

(Berry, Barabote, and Normand 2014). 

For above-ground niches, a total of 435 (bark), 98 (stem), and 105 (leaf) bacterial 

indicator OTUs were detected across control and burned plots before and after prescribed burn 

treatment. In bark bacterial communities, Oxalobacteraceae, Microbacteriaceae, 

Beijerinckiazeae, Nocardioidaceae, Micromonosproaceae, and Burkholderiaceae were the 

indicator OTUs found in C. florida plots where prescribed burn treatment was applied, whereas, 

none of the indicator OTUs were found in stem and leaves bacterial communities for C. florida 

post prescribed burn treatment. 

 A total of 203 fungal indicator ASVs for soil and 29 fungal indicator ASVs for root 

communities were detected across control and burned plots of C. florida trees before and after 

the prescribed burn treatment. No fungal indicator ASVs were found in soil and root fungal 

communities in plots which received prescribed burn treatment. 

 For above-ground niches, a total of 126 (bark), 130 (stem), and 287 fungal indicator 

ASVs were detected across control and burned plots of C. florida trees before and after the 
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prescribed burn treatment. In bark fungal communities, Cucurbitariaceae, 

Rhynchogastermataceae, and Cladosporiaceae were found as indicator fungal ASVs in burned C. 

florida plots. While there was no indicator ASV found for stem fungal communities in post burn 

plots, Mycosphaerellaceae and Dothideomycetes were detected as fungal ASVs for leaf 

communities in burned C. florida plots. 
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2.5 Discussion 

Fungal and bacterial microbial communities were examined across five different niches 

associated with 5 different C. florida trees that were growing in each of four different plots (two 

burned, and two unburned). Tree niches were sampled at about the same time of year, and 152 

days after imposition of a fire event prescribed for the two burned plots. Our results indicate that 

prescribed burn had variable effects on bacterial and fungal alpha diversity of different niches 

likely due to differences in proximity to burn treatments. However, these metrics did differ 

significantly between 2018 and 2019 likely due to the differences in the environmental factors 

between the years. 

Many studies have focused on the impact of fire on below-ground microbial communities 

and the importance of these communities for recovery from fire disturbance (Oliver, Callaham 

Jr, and Jumpponen 2015; Mikita-Barbato, Kelly, and Tate III 2015; Pressler, Moore, and Cotrufo 

2019; Dove and Hart 2017). However, the focus on below-ground microbial communities has 

precluded a comprehensive view of the entire phytobiome response to fire (Kardol and Wardle 

2010). Furthermore, much of our understanding of the effects of fire on soil properties comes 

from wildfires (Oliver, Callaham Jr, and Jumpponen 2015). Wildfires frequently burn hotter, 

consume more organic matter, and result in greater nutrient volatilization than prescribed burns 

(Hatten and Zabowski 2010). Therefore, the effects of prescribed burn on microbial communities 

might be expected to have less dramatic or prolonged effects than those of wildfires (Neary et al. 

1999). It is still uncertain whether the impacts of wildfires are comparable to those of prescribed 

burning (Oliver, Callaham Jr, and Jumpponen 2015). In addition to differences between 

prescribed and wild fires, microbial responses to fire may be site specific indicating a need for 
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sampling across a variety of ecosystems and host species (Mikita-Barbato, Kelly, and Tate III 

2015). 

Soil does not exhibit a single environment, instead, soil encompasses a broad range of 

diverse microbial habitats (Fierer 2017). This includes the rhizosphere, soil in close proximity to 

the plant roots; surface layers that are exposed to light, the photic zone; soil found in water 

flows, and cracks (Fierer 2017). The most important factors that are most likely to influence soil 

microbiome are soil pH, nitrogen availability, soil organic carbon content, temperature and redox 

status (Pett-Ridge and Firestone 2005; Oliverio, Bradford, and Fierer 2017; Sul et al. 2013; 

Cederlund et al. 2014). The immediate effect of fire on soil microbiome is the reduction of their 

biomass (Certini 2005). Following a fire event, soil pH increases by soil heating because of 

denaturation of organic acids (Certini 2005). However, significant increases in pH only occur if 

the fire event reaches high temperature (>450-500 °C) resulting from the complete combustion 

of present fuel on the ground (Arocena and Opio 2003). For below-ground niches such as soil 

and roots, fire can directly affect the microbiome by producing high temperatures or indirectly 

affect them by increasing soil pH (by depositing ash) or by reduction in soil C and N (Grogan, 

Baar, and Bruns 2000; Grogan, Burns, and Chapin Iii 2000). However, fire disturbances can 

exert positive, negative, and neutral effects on below-ground microbial communities that are 

often species specific (Coyle et al. 2017). Previous evidence suggests that fungi are more 

sensitive to fire than bacteria, probably due to both the lower thermal tolerance of fungi and, for 

mycorrhizal fungi, the mortality of plant hosts during fire (Pressler, Moore, and Cotrufo 2019; 

Neary et al. 1999). Our findings of reduction in fungal, but not bacterial alpha diversity 

following prescribed burns is in line with the findings of these previous studies. Due to the low 

intensity of the prescribed burn in our study, only the top few centimeters of the soil surface may 
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have been burned, and because our samples were taken from depths up to 15 cm, deeper soil 

communities may have been unaffected and the overall response of soil microbial communities 

to the prescribed burn treatment may have been diluted (Neary et al. 1999; Pressler, Moore, and 

Cotrufo 2019). 

In root fungal communities, ectomycorrhizal species decreased after prescribed burn 

treatment, but saprophytic species increased. The abundance of saprophytic fungi was higher in 

post-fire C. florida plots, which could be related to findings that spore germination of certain 

saprophytic fungi is stimulated by heat (Dahlberg 2002). Provided that C. florida has shallow 

root system, saprophytic growth pattern could allow some of these species to survive short 

periods of live-host absence by persisting on dead host roots or other organic matter (Bonello, 

Bruns, and Gardes 1998; Martín-Pinto et al. 2006; McLemore 1990). The reduction in 

ectomycorrhizal species in C. florida plots following prescribed burn treatment could be due to 

the fact that ectomycorrhizal species require more energy from the host plant and have slower 

growth rates and, therefore, are less competitive after fire events (Torres and Honrubia 1997; 

Klingeman, Augé, and Flanagan 2002). 

Family Acidothermaceae, which was found as an indicator bacterial OTU in root 

endophytes of burned Cornus florida plots, contains thermophilic bacteria which was originally 

isolated from thermal springs in Yellowstone National Park (WY, USA) (Berry, Barabote, and 

Normand 2014). Acidothermus cellulolyticus is presently the sole species, in the genus 

Acidothermus of the family Acidothermaceae. This bacterial species is capable of degrading 

cellulose at relatively high growth temperatures (55°C optimum) (Mohagheghi et al. 1986). The 

Acidothermus genome contains genes which encode for thermostable enzymatic cellulose 

degradation which have been employed in various biotechnological applications. However, the 
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presence of the family Acidothermaceae in burned C. florida plots could affect the stability of 

the root cell walls which are primarily made of cellulose and hemicellulose (Mohagheghi et al. 

1986). 

Effects of prescribed burning on the microbiome of C. florida have remained largely 

unknown, despite of the essential roles of microbiome in nutrient cycling as well as in soil and 

plant health. Intense wildfires tend to have greater impacts and longer lasting effects than low 

intensity fires, often implemented with prescribed burn management. Thus, it is important to 

evaluate the effects of prescribed fire as the results from studies on wildfires may not permit 

extrapolation into prescribed fires. The direct and selective impacts of prescribed fire on 

microbiome can potentially alter the ecological process that they mediate. Prescribed fire is an 

important management tool to reduce fuel loads, to remove non-fire adapted species and to 

sustain fire-adapted taxa in many forested ecosystems of the southeastern USA. Yet, the long-

term effects of recurring prescribed fires on microbial communities in these ecosystems remain 

unclear (Oliver, Callaham Jr, and Jumpponen 2015). 

Evaluating the long-term effects of recurring prescribed fires on soil and fungal 

communities therein is important to properly manage forests to avoid compromising the 

composition and function of the soil fungal communities that are crucial to ecosystem services 

through nutrient cycling and facilitation of plant productivity (Wardle et al. 2004). Further work 

will be needed to determine if the composition of microbial communities will return to the 

composition of unburned plots or if they will reach some alternative steady state. More detailed 

functional assays targeting either enzyme activities or genes that code for those enzymes would 

be helpful to gain further functional inference. Doing genome wide association study can be used 
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to shed light on the microbial assembly which has been affected by prescribed burn treatment 

(Tabrett and Horton 2020). 
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2.6 Appendix: Tables and Figures 
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Table 2.1 Total exchange capacity (TEC), pH, organic matter (OM), phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K), 
and ammonium ion concentration (NH4-N) of Cornus florida trees in 2018 and 2019. 

Tree Tag Year Treatment TEC pH OM P Ca Mg K NH4-N 
18_CF_71 2018 Control 2.15 4.8 4.27 8 103 29 44 24.3 
18_CF_72 2018 Control 7.89 4.5 8.57 9 455 48 53 31.1 
18_CF_73 2018 Control 5.38 4.6 9.1 13 274 55 70 42.5 
18_CF_74 2018 Control 3.98 4.6 5.28 9 193 43 56 31.8 
18_CF_75 2018 Control 3.96 4.6 7.05 9 177 49 61 44.7 
18_CF_151 2018 Pre-burned 9.52 4.4 13.55 22 468 74 70 14.7 
18_CF_152 2018 Pre-burned 3.61 4.4 6.78 12 127 43 56 7.1 
18_CF_153 2018 Pre-burned 8.23 4 11.16 12 249 62 82 8.1 
18_CF_154 2018 Pre-burned 6.54 4.1 9 14 243 41 55 15.6 
18_CF_156 2018 Pre-burned 4.65 4.2 7.17 9 154 41 60 7.8 
18_CF_221 2018 Pre-burned 8.52 4.5 7.01 12 489 48 61 9.2 
18_CF_222 2018 Pre-burned 6 4.3 8.84 11 259 44 58 7.7 
18_CF_223 2018 Pre-burned 7.46 4 9.08 11 208 68 71 7.9 
18_CF_224 2018 Pre-burned 7.45 4.2 9.51 13 301 53 65 8.7 
18_CF_225 2018 Pre-burned 6.85 4.2 10.35 11 268 52 59 8.6 
18_CF_391 2018 Control 6.87 4.3 7.36 10 279 59 71 8.8 
18_CF_392 2018 Control 5.98 4.4 7.01 14 262 46 89 12.9 
18_CF_394 2018 Control 6.09 4.3 5.28 6 253 53 53 4.6 
18_CF_396 2018 Control 6 4.1 6.81 12 198 51 53 13 
18_CF_398 2018 Control 4.02 4.8 6.25 8 244 33 50 14.8 
19_CF_71 2019 Control 1.72 4.8 2.86 6 78 22 36 15.5 
19_CF_72 2019 Control 2.78 4.7 2.55 5 141 27 54 17.3 
19_CF_73 2019 Control 2.34 4.9 2.76 7 122 33 38 17.8 
19_CF_74 2019 Control 3.56 4.7 3.28 9 199 32 50 21 
19_CF_75 2019 Control 4.26 4.7 3.01 10 256 33 44 22.1 
19_CF_151 2019 Post-burned 2.95 4.7 3.1 8 154 31 44 18.8 
19_CF_152 2019 Post-burned 2.53 4.8 2.61 7 134 28 45 14.9 
19_CF_153 2019 Post-burned 4.43 4.6 2.26 10 274 23 32 13.5 
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19_CF_154 2019 Post-burned 3.32 4.6 2.75 8 178 26 43 13.2 
19_CF_156 2019 Post-burned 3.94 4.6 1.7 8 238 23 30 13.4 
19_CF_221 2019 Post-burned 2.88 4.5 2.59 7 144 22 34 12.6 
19_CF_222 2019 Post-burned 2.47 4.6 3.35 6 121 24 33 9.5 
19_CF_223 2019 Post-burned 2.16 4.4 2.16 5 78 25 29 11.3 
19_CF_224 2019 Post-burned 2.31 4.7 2.41 7 132 18 29 10.2 
19_CF_225 2019 Post-burned 2.93 4.2 3.29 6 107 24 33 13.4 
19_CF_391 2019 Control 1.83 4.8 2.19 5 79 24 52 15.6 
19_CF_392 2019 Control 4.48 4.3 1.96 8 216 21 41 12.7 
19_CF_394 2019 Control 1.65 5 1.93 5 92 21 36 21.5 
19_CF_396 2019 Control 4.87 4.2 2.86 8 219 25 38 15.7 
19_CF_398 2019 Control 1.99 4.8 2.42 5 107 20 36 14.6 
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Table 2.2 Plant species within 5 m radius of each Cornus florida tree in study. *1 – Present, 0 – Absent. 

Flowerin
g 
Dogwood 
Tree Tag 

White 
Oak 
(Quercu
s nigra) 

Sassafra
s 
albidum 

Viti
s 
spp. 

Flowerin
g 
Dogwood 
(Cornus 
florida) 

Sourwood 
(Oxydendru
m arboreum) 

Pinus 
strobu
s 

Persimmo
n 
(Diospyros 
virginiana) 

Hickory 
(Caryasp.
)  

Overcup 
Oak 
(Quercu
s lyrata) 

Vacciniu
m spp. 

71 1 1 1 1 0 0 0 0 0 0 

72 1 1 0 1 1 0 0 0 0 0 

73 1 0 0 1 0 1 1 0 0 0 

74 1 0 0 0 0 0 0 1 0 0 

75 1 0 0 1 0 0 1 0 0 0 

151 0 0 0 0 0 0 1 0 0 0 

152 0 0 0 0 0 1 0 0 0 0 

153 0 0 0 0 0 1 0 0 1 0 

154 1 0 1 1 0 1 1 0 0 1 

156 1 0 0 1 0 0 0 0 0 0 

221 1 0 0 1 0 1 0 0 0 0 

222 1 0 0 1 1 0 1 0 0 0 

223 0 0 0 1 1 1 1 0 0 0 

224 0 0 0 1 0 0 1 1 1 0 
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225 0 0 0 1 0 1 1 0 1 0 

391 1 0 0 1 0 0 0 0 0 0 

392 1 0 1 1 0 0 1 0 0 0 

394 0 0 1 1 0 1 0 1 0 0 

396 1 0 0 1 1 0 0 1 0 0 

398 1 0 0 1 0 0 0 0 0 0 
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Table 2.3 Average age, diameter at breast height (DBH), height, and co-ordinates of Cornus florida trees in burned and unburned 
plots. 

Tree Tag Plot Burned/Unburned Average age 
estimate (years) 

DBH 
(cm) 

Height 
(m) 

Latitude Longitude 

71 A Unburned 39 9 8.8 35.3204087 -86.1523903 

72 A Unburned 38 7 8.9 35.3205077 -86.1533106 

73 A Unburned 50 8.5 9.9 35.3203534 -86.1532791 

74 A Unburned 44 7 7.7 35.3202281 -86.1530394 

75 A Unburned 41 8 11.4 35.3202399 -86.1528422 

151 B Burned 39 8 7.7 35.3206765 -86.1525653 

152 B Burned 35 9 9 35.3207345 -86.1526317 

153 B Burned 37 8 8 35.3205944 -86.1524959 

154 B Burned 42 8 9.4 35.3205827 -86.1527051 

156 B Burned 29 7 6.9 35.320363 -86.1525707 

221 C Burned 32 8 8.3 35.3208499 -86.1523108 

222 C Burned 36 7 6.3 35.3208215 -86.1521985 

223 C Burned 41 7.5 8.4 35.3205367 -86.152399 

224 C Burned 43 10 8.5 35.3205955 -86.1524862 

225 C Burned 40 7 5.4 35.3207684 -86.1526944 

391 D Unburned 34 6 7.2 35.3203096 -86.1526387 
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392 D Unburned 39 8 8.4 35.32038 -86.1523142 

394 D Unburned 34 7 7.1 35.3201761 -86.1520654 

396 D Unburned NA 6 5.6 35.3202738 -86.1522783 
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Table 2.4 Rarefaction cutoffs for 16S and ITS sequences across five niches of Cornus florida for 
2018 and 2019 samples. 

Niche Number of sequences in 
subsampled libraries 

Samples retained (out of 40) 

Soils 16S 11,677 40 
Soils ITS 14,563 40 
Roots 16S 3,614 40 
Roots ITS 12,672 39 
Bark 16S 10,608 39 
Bark ITS 12,184 39 
Stem 16S 2,030 38 
Stem ITS 17,688 40 

Leaves 16S 1,139 40 
Leaves ITS 14,362 39 
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Table 2.5 Two Sample t-test results of alpha diversity (richness and Shannon diversity index) metrics and permutational multivariate 
ANOVA results with Bray-Curtis distance matrices for both bacterial and fungal communities of belowground niches (soils and roots) 
of Cornus florida before and after prescribed burn treatment (significant P-values bolded). 

  Alpha-diversity Beta-diversity 
Niche Richness Shannon diversity Bray-Curtis Dissimilarity 

Organism Two Sample t-test Two Sample t-test PERMANOVA 
Analysis t Df P t Df P df F R2 P 

                      
Soils                     

Bacteria                     
Treatment 1.28 12.56 0.225 1.68 14.58 0.114 1 2.09 0.03 0.058 
Year 7.70 19 <0.001 6.29 19 <0.001 1 24.52 0.38 <0.001 
Treatment × Year             1 1.13 0.02 0.269 
Plot             2 1.55 0.05 0.107 
Year × Plot             2 1.00 0.03 0.381 

Fungi                     
Treatment -0.43 17.13 0.673 0.12 16.49 0.905 1 2.01 0.05 <0.001 
Year -3.40 19 0.003 -4.56 19 <0.001 1 3.97 0.09 <0.001 
Treatment × Year             1 0.63 0.01 0.993 
Plot             2 1.75 0.08 <0.001 
Year × Plot             2 0.54 0.02 1 

Roots                     
Bacteria                     

Treatment 1.08 12.05 0.301 -0.31 12.16 0.762 1 1.78 0.04 0.017 
Year 0.83 19 0.420 3.53 19 0.002 1 2.6 0.06 <0.001 
Treatment × Year             1 1.19 0.03 0.199 
Plot             2 1.35 0.06 0.052 
Year × Plot             2 1.13 0.05 0.228 

Fungi                     



www.manaraa.com

Table 2.5 continued 

 
 

46 

Treatment -1.96 14.49 0.069 -0.47 16.85 0.646 1 1.73 0.43 0.017 
Year -3.96 18 0.001 -6.00 18 <0.001 1 1.06 0.03 0.316 
Treatment × Year             1 0.95 0.02 0.513 
Plot             2 1.87 0.09 0.001 
Year × Plot             2 0.56 0.03 0.995 
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Table 2.6 Two Sample t-test results of alpha diversity alpha diversity (richness and Shannon diversity index) metrics and 
permutational multivariate ANOVA results with Bray-Curtis distance matrices of aboveground niches (bark, stem, and leaves) of 
Cornus florida before and after prescribed burn treatment (significant P-values bolded). 
 
  Alpha-diversity Beta-diversity 
Niche Richness Shannon diversity Bray-Curtis Dissimilarity 

Organism Two Sample t-test Two Sample t-test PERMANOVA 
Analysis t Df P t Df P Df F R2 P 

                      
Bark                     

Bacteria                     
Treatment 1.95 15.02 0.070 0.67 16.35 0.515 1 1.94 0.04 0.022 
Year 6.9 18 <0.001 4.14 18 <0.001 1 2.13 0.05 0.016 
Treatment × 

Year             1 0.91 0.02 0.514 

Plot             2 2.76 0.13 <0.001 
Year × Plot             2 0.79 0.04 0.841 

Fungi                     
Treatment 1.18 16.32 0.254 -1.18 11.99 0.259 1 1.38 0.03 0.04 
Year -2.32 18 0.032 -3.76 18 0.001 1 1.95 0.05 <0.001 
Treatment × 

Year             1 0.76 0.02 0.92 

Plot             2 1.76 0.09 <0.001 
Year × Plot             2 0.76 0.04 0.979 

Stem                     
Bacteria                     

Treatment 1.95 15.02 0.070 1.91 14.62 0.076 1 1.46 0.03 0.154 
Year 5.36 17 <0.001 5.16 17 <0.001 1 6.89 0.16 <0.001 
Treatment × 

Year             1 0.87 0.02 0.477 
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Plot             2 1.09 0.05 0.311 
Year × Plot             2 0.59 0.03 0.937 

Fungi                     
Treatment -1.44 13.66 0.171 -1.48 10.61 0.168 1 1.17 0.02 0.238 
Year -3.02 19 0.007 -2.03 19 0.057 1 7.09 0.15 <0.001 
Treatment × 

Year             1 0.94 0.02 0.520 

Plot             2 1.89 0.08 0.002 
Year × Plot             2 1.03 0.04 0.400 

Leaves                     
Bacteria                     

Treatment -0.45 12.92 0.664 -0.07 11.28 0.949 1 1.88 0.04 0.028 
Year 1.19 19 0.248 -1.22 19 0.239 1 6.02 0.13 <0.001 
Treatment × 

Year             1 1.03 0.02 0.362 

Plot             2 0.86 0.04 0.673 
Year × Plot             2 1.04 0.05 0.368 

Fungi                     
Treatment 1.62 11.99 0.131 1.93 12.78 0.076 1 1.76 0.04 0.045 
Year -7.64 18 <0.001 -10.32 18 <0.001 1 10.41 0.21 <0.001 
Treatment × 

Year             1 1.26 0.03 0.183 

Plot             2 1.53 0.06 0.051 
Year × Plot             2 0.94 0.04 0.529 
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Figure 2.1 Principal component analysis of physicochemical properties of bulk soils collected 
from 20 Cornus florida trees before and after the prescribed burn treatment. PC1 correlates with 
OM, Mg, TEC, Na, Fe, K, P, Al, and Ca. PC2 correlates with Zn, Cu, Mn, and NH4.N. Soils 
physicochemical properties did not significantly differ by prescribed burn treatment (Fig. 2.4.1; 
Pseudo-F1,39 = 2.27, P = 0.109, R2 = 0.03). Points and ellipses are colored by prescribed burn 
treatment and year, and ellipses represent standard deviation of axis scores from the group 
centroids. Length of arrows indicate strength of association. 
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Figure 2.2 Shannon diversity (A, C, E, G, I) and observed OTU richness (B, D, F, H, J) of 
bacterial communities of belowground niches - soils (A, B) and roots (C, D) and aboveground 
niches - bark (E, F), stem (G, H), and leaves (I, J) before and after prescribed burn treatment of 
Cornus florida trees. OTU, operational taxonomic unit. 
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Figure 2.3 Principal coordinates analyses of both bacterial (16S) and fungal (ITS) community 
composition of soils (A, B), roots (C, D), bark (E, F), stem (G, H), and leaves (I, J) niches before 
and after prescribed burn treatment of Cornus florida plots. Each point represents an individual 
sample, colored by treatment (control and burn) and shaped by year. See Table 2.2 and 2.3 for 
statistical test results. 
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Figure 2.4 Relative abundance of bacterial communities of belowground niches - soils and roots 
at phylum (A, C) and class (B, D) level. *Others represent taxa that comprised less than 1% of 
all bacterial sequences. 
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Figure 2.5 Shannon diversity (A, C, E, G, I) and observed ASV richness (B, D, F, H, J) of fungal 
communities of belowground niches - soils (A, B) and roots (C, D) and aboveground niches - 
bark (E, F), stem (G, H), and leaves (I, J). ASV, amplicon sequence variant. 
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Figure 2.6 Relative abundance of fungal communities of belowground niches - soils and roots at 
phylum (A, C) and class (B, D) level before and after the prescribed burn treatment of Cornus 
florida trees. *Others represent taxa that comprised less than 1% of all fungal sequences. 
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Figure 2.7 Relative abundance of fungal functional guilds of soil (A), roots (B), bark (C), stem 
(D) and leaves (E) before and after the prescribed burn treatment of Cornus florida tree plots. 
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Figure 2.8 Relative abundance of bacterial communities of aboveground niches - bark, stem, and 
leaves at phylum (A, C, E) and class (B, D, F) level before and after the prescribed burn 
treatment of Cornus florida trees. *Others represent taxa that comprised less than 1% of all 
bacterial sequences. 
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Figure 2.9 Relative abundance of fungal communities of aboveground niches - bark, stem, and 
leaves at phylum (A, C, E) and class (B, D, F) level before and after the prescribed burn 
treatment of Cornus florida trees. *Others represent taxa that comprised less than 1% of all 
fungal sequences. 
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3 Conclusion 
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This study characterized the microbiome of C. florida trees before and after the application of a 

prescribed burn treatment. Fungal and bacterial microbial communities were examined across 

five different niches which included soil, fine roots, bark, stem, and leaves associated with five 

different C. florida trees that were growing in each of four different plots (two burned, and two 

unburned). Tree niches were sampled at about the same time of year and 152 days after 

imposition of a fire event prescribed for the two burned plots. Our results indicate that prescribed 

burn had variable effects on bacterial and fungal alpha diversity of different niches likely due to 

differences in proximity to burn treatment. However, these did differ significantly between 2018 

and 2019 likely due to the differences in the environmental factors between the years. 

We successfully sampled these niches from C. florida trees before and after the 

prescribed fire. The original plan was to include a fruit niche as a part of study design. Given 

climatic conditions, prolonged rainy and dry periods, and probable frugivory, our decision to 

wait to perform the prescribed burn, resulted in loss of this niche as a study possibility. Although 

C. florida fruits ripen from September to late October across its native range, insufficient 

numbers of fruits were found, and only of a few of the experimental trees, when post-fire 

sampling was conducted in 2019. 

To record the temperature achieved by prescribed burn at different plot locations, 

temperature indicating liquid paints (Cole-Parmer, Vernon Hills, Illinois) were used. Paints with 

meltdown temperature indicators at 79, 107, 135, 163, 191, 218, 246, 274, 343, 371, 399, and 

427 degrees Celsius were applied parallel to the width of the ceramic white tile (40.64 cm x 

10.16 cm) as well as to each other. For each individual tree, four tiles were installed upright at a 

distance of 5 m from that tree in each of the cardinal directions. However, the evaluation of the 

temperature achieved during prescribed fire could not be evaluated using this method. Paints did 
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not melt at those given thermal set points. However, we did install an infrared imaging camera 

on the site which recorded the temperatures on C. florida trees in the burned plots. We used that 

data to obtain burn temperatures experienced within the plots. Future efforts will further examine 

this data to extract insight about the behavior of the prescribed burn applied. This issue could 

have been mitigated if we had added thermocouples in ground soil at a depth of about 5 cm to 

measure the temperature of the prescribed fire as it was occurring. This would have given us a 

more comprehensive view of how the prescribed fire behaved with C. florida plots and adjacent 

to study trees. 

The alpha diversity of bacterial communities of belowground niches (soil and fine roots of 

C. florida trees) increased in 2019 as compared to 2018 while the alpha diversity of fungal 

communities decreased. Bacterial and fungal community composition was also significantly 

different in 2019 as compared to 2018. The relative abundance of bacterial and fungal 

communities of C. florida trees were not significantly changed by prescribed burn treatment. 

Further analyses such as null model approach would give us greater insight into how the 

microbial communities in control plots and burned plots varied across time (Zhao et al. 2015). If 

this experiment could be repeated and additional funds were available for sequence processing, 

more sampling time points would have been helpful in addressing other experimental questions. 

For example, additional years of collection would have provided novel information regarding 

resilience of microbial communities as a result of prescribed fire into extended time points. A 

microbiome sampling point one month after the prescribed fire, three months after the prescribed 

fire, and then six months after the prescribed fire would have helped us determine how the 

microbial communities changed across time. However, given limited funding resources and time 

needed to complete my M.S. degree, these points were not addressed in this study.  
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Interestingly, in fungal communities associated with fine roots, ectomycorrhizal species 

decreased following the prescribed burn treatment, but the abundance of saprophytic fungal 

species increased. The reduction in ectomycorrhizal species in C. florida plots following 

prescribed burn treatment could be explained by the fact that ectomycorrhizal species require 

more energy from the host plant, generally have slower growth rates and, therefore, are less 

competitive after fire events. Furthermore, Acidothermus was found as an indicator bacterial 

species in root niche in burned C. florida plots. The presence of this bacterial species can affect 

the root cell wall stability as these bacterial species contain enzymes that degrade cellulose and 

hemicellulose (Mohagheghi et al. 1986). The results from this study are intended to be published 

in the APS journals Phytobiomes. Future research will be needed to investigate if this would 

have any lasting consequences on the stability of microbial symbioses of C. florida trees. 

The plant microbiome plays an important role in reducing the occurrence of plant disease 

and increasing nutrient availability under stressful environmental conditions. Evaluating the 

long-term effects of prescribed fires on plant microbial communities therein is important to avoid 

compromising the composition and function of these microbial communities (Wardle et al. 

2004). Our study demonstrated that the microbial communities of C. florida trees exhibited 

resilience 152 days after prescribed burn treatment. Further work will be needed to determine if 

the composition of microbial communities of C. florida trees will return to the composition of 

unburned plots, or if they will reach some alternative steady state. More detailed functional 

assays targeting either enzyme activities or genes that code for those enzymes would be helpful 

to gain further functional understanding about how the system is affected. Further studies such as 

metatranscriptomic and genome-wide association studies can be used to evaluate the microbial 

assemblage that may be influenced by prescribed burn treatment (Tabrett and Horton 2020).  
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